Copied to
clipboard

G = C12.7C42order 192 = 26·3

7th non-split extension by C12 of C42 acting via C42/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.7C42, M4(2):5Dic3, C24.46(C2xC4), C24:C4:27C2, (C2xC8).275D6, (C2xC6).7C42, C4.7(C4xDic3), (C8xDic3):30C2, C6.31(C8oD4), (C3xM4(2)):4C4, C4:Dic3.21C4, C23.33(C4xS3), C6.26(C2xC42), C8.12(C2xDic3), C3:5(C8o2M4(2)), C2.5(D12.C4), (C22xC4).363D6, (C6xM4(2)).8C2, C22.7(C4xDic3), C12.177(C22xC4), (C2xC24).276C22, (C2xC12).865C23, C6.D4.11C4, (C2xM4(2)).19S3, C4.35(C22xDic3), (C22xC12).181C22, (C4xDic3).285C22, C23.26D6.18C2, (C2xC3:C8):9C4, C3:C8.24(C2xC4), C4.115(S3xC2xC4), (C2xC4).83(C4xS3), C22.63(S3xC2xC4), C2.14(C2xC4xDic3), (C22xC3:C8).11C2, (C2xC12).101(C2xC4), (C2xC3:C8).334C22, (C22xC6).65(C2xC4), (C2xC4).47(C2xDic3), (C2xC4).807(C22xS3), (C2xC6).135(C22xC4), (C2xDic3).67(C2xC4), SmallGroup(192,681)

Series: Derived Chief Lower central Upper central

C1C6 — C12.7C42
C1C3C6C12C2xC12C2xC3:C8C22xC3:C8 — C12.7C42
C3C6 — C12.7C42
C1C2xC4C2xM4(2)

Generators and relations for C12.7C42
 G = < a,b,c | a12=1, b4=c4=a6, bab-1=a5, cac-1=a7, bc=cb >

Subgroups: 216 in 130 conjugacy classes, 87 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C8, C2xC4, C2xC4, C2xC4, C23, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C3:C8, C24, C2xDic3, C2xC12, C2xC12, C22xC6, C4xC8, C8:C4, C42:C2, C22xC8, C2xM4(2), C2xC3:C8, C2xC3:C8, C4xDic3, C4:Dic3, C6.D4, C2xC24, C3xM4(2), C22xC12, C8o2M4(2), C8xDic3, C24:C4, C22xC3:C8, C23.26D6, C6xM4(2), C12.7C42
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, Dic3, D6, C42, C22xC4, C4xS3, C2xDic3, C22xS3, C2xC42, C8oD4, C4xDic3, S3xC2xC4, C22xDic3, C8o2M4(2), D12.C4, C2xC4xDic3, C12.7C42

Smallest permutation representation of C12.7C42
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 70 10 67 7 64 4 61)(2 63 11 72 8 69 5 66)(3 68 12 65 9 62 6 71)(13 32 22 29 19 26 16 35)(14 25 23 34 20 31 17 28)(15 30 24 27 21 36 18 33)(37 92 40 95 43 86 46 89)(38 85 41 88 44 91 47 94)(39 90 42 93 45 96 48 87)(49 84 52 75 55 78 58 81)(50 77 53 80 56 83 59 74)(51 82 54 73 57 76 60 79)
(1 77 24 87 7 83 18 93)(2 84 13 94 8 78 19 88)(3 79 14 89 9 73 20 95)(4 74 15 96 10 80 21 90)(5 81 16 91 11 75 22 85)(6 76 17 86 12 82 23 92)(25 37 62 57 31 43 68 51)(26 44 63 52 32 38 69 58)(27 39 64 59 33 45 70 53)(28 46 65 54 34 40 71 60)(29 41 66 49 35 47 72 55)(30 48 67 56 36 42 61 50)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,70,10,67,7,64,4,61)(2,63,11,72,8,69,5,66)(3,68,12,65,9,62,6,71)(13,32,22,29,19,26,16,35)(14,25,23,34,20,31,17,28)(15,30,24,27,21,36,18,33)(37,92,40,95,43,86,46,89)(38,85,41,88,44,91,47,94)(39,90,42,93,45,96,48,87)(49,84,52,75,55,78,58,81)(50,77,53,80,56,83,59,74)(51,82,54,73,57,76,60,79), (1,77,24,87,7,83,18,93)(2,84,13,94,8,78,19,88)(3,79,14,89,9,73,20,95)(4,74,15,96,10,80,21,90)(5,81,16,91,11,75,22,85)(6,76,17,86,12,82,23,92)(25,37,62,57,31,43,68,51)(26,44,63,52,32,38,69,58)(27,39,64,59,33,45,70,53)(28,46,65,54,34,40,71,60)(29,41,66,49,35,47,72,55)(30,48,67,56,36,42,61,50)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,70,10,67,7,64,4,61)(2,63,11,72,8,69,5,66)(3,68,12,65,9,62,6,71)(13,32,22,29,19,26,16,35)(14,25,23,34,20,31,17,28)(15,30,24,27,21,36,18,33)(37,92,40,95,43,86,46,89)(38,85,41,88,44,91,47,94)(39,90,42,93,45,96,48,87)(49,84,52,75,55,78,58,81)(50,77,53,80,56,83,59,74)(51,82,54,73,57,76,60,79), (1,77,24,87,7,83,18,93)(2,84,13,94,8,78,19,88)(3,79,14,89,9,73,20,95)(4,74,15,96,10,80,21,90)(5,81,16,91,11,75,22,85)(6,76,17,86,12,82,23,92)(25,37,62,57,31,43,68,51)(26,44,63,52,32,38,69,58)(27,39,64,59,33,45,70,53)(28,46,65,54,34,40,71,60)(29,41,66,49,35,47,72,55)(30,48,67,56,36,42,61,50) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,70,10,67,7,64,4,61),(2,63,11,72,8,69,5,66),(3,68,12,65,9,62,6,71),(13,32,22,29,19,26,16,35),(14,25,23,34,20,31,17,28),(15,30,24,27,21,36,18,33),(37,92,40,95,43,86,46,89),(38,85,41,88,44,91,47,94),(39,90,42,93,45,96,48,87),(49,84,52,75,55,78,58,81),(50,77,53,80,56,83,59,74),(51,82,54,73,57,76,60,79)], [(1,77,24,87,7,83,18,93),(2,84,13,94,8,78,19,88),(3,79,14,89,9,73,20,95),(4,74,15,96,10,80,21,90),(5,81,16,91,11,75,22,85),(6,76,17,86,12,82,23,92),(25,37,62,57,31,43,68,51),(26,44,63,52,32,38,69,58),(27,39,64,59,33,45,70,53),(28,46,65,54,34,40,71,60),(29,41,66,49,35,47,72,55),(30,48,67,56,36,42,61,50)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G···4N6A6B6C6D6E8A···8H8I···8P8Q8R8S8T12A12B12C12D12E12F24A···24H
order12222234444444···4666668···88···8888812121212121224···24
size11112221111226···6222442···23···366662222444···4

60 irreducible representations

dim111111111122222224
type++++++++-+
imageC1C2C2C2C2C2C4C4C4C4S3D6Dic3D6C4xS3C4xS3C8oD4D12.C4
kernelC12.7C42C8xDic3C24:C4C22xC3:C8C23.26D6C6xM4(2)C2xC3:C8C4:Dic3C6.D4C3xM4(2)C2xM4(2)C2xC8M4(2)C22xC4C2xC4C23C6C2
# reps122111844812416284

Matrix representation of C12.7C42 in GL4(F73) generated by

0100
727200
00270
002646
,
31300
454200
00630
00063
,
46000
04600
002871
005045
G:=sub<GL(4,GF(73))| [0,72,0,0,1,72,0,0,0,0,27,26,0,0,0,46],[31,45,0,0,3,42,0,0,0,0,63,0,0,0,0,63],[46,0,0,0,0,46,0,0,0,0,28,50,0,0,71,45] >;

C12.7C42 in GAP, Magma, Sage, TeX

C_{12}._7C_4^2
% in TeX

G:=Group("C12.7C4^2");
// GroupNames label

G:=SmallGroup(192,681);
// by ID

G=gap.SmallGroup(192,681);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,387,100,136,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^4=c^4=a^6,b*a*b^-1=a^5,c*a*c^-1=a^7,b*c=c*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<